If it's not what You are looking for type in the equation solver your own equation and let us solve it.
90=20x^2
We move all terms to the left:
90-(20x^2)=0
a = -20; b = 0; c = +90;
Δ = b2-4ac
Δ = 02-4·(-20)·90
Δ = 7200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7200}=\sqrt{3600*2}=\sqrt{3600}*\sqrt{2}=60\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{2}}{2*-20}=\frac{0-60\sqrt{2}}{-40} =-\frac{60\sqrt{2}}{-40} =-\frac{3\sqrt{2}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{2}}{2*-20}=\frac{0+60\sqrt{2}}{-40} =\frac{60\sqrt{2}}{-40} =\frac{3\sqrt{2}}{-2} $
| 0.3(12x-9)=-9 | | 5x−6+2x=7(x+2) | | n^2-14n-50=0 | | 0.16/0.40=2.5/x | | 2x^2-14x-27=0 | | 7(3x-2)-4=5 | | (6x+1)(5x+1)+90=180 | | 3(x+4)+5=8x+2 | | 2a+4a-a=10+a=6 | | -6=w/2+8 | | 4.9t^2+3.5t+115=0 | | 0.3(12x-9=-9 | | 3(4x+7)=-15 | | -14m+8m=13-61 | | 1680+x(145.50)=3426.00 | | 9k+6=-156 | | -4x=4x+5x | | 4.9t^2+3.5t-115=0 | | 10=5x^2+30x-15 | | 7t+5t=24-8+8 | | -4x=4x5x | | 4-2n-6=20 | | T=13#12t= | | 12.3-18=3(-6+4.1x) | | 3x-12+48=-3x | | 4m-6;5m=2 | | -10+5a=75 | | 26=5x-11 | | 3(4x-9)=4+12x | | 5u+45=2 | | -1c/4-11=-16 | | 5x+3+1=19 |